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Abstract. We interpret a new kind of localization in a finite one-dimensional tight-binding
model under a weak applied electric field. This phenomenon is quite general and manifests
itself in a more than exponential decreasing behaviour of the chain transmittivity. We provide
analytic expressions for the transmittivity and confirm the theoretical results by transfer matrix
numerical calculations. We show that this phenomenon is present in ordered as well as in
aperiodic (incommensurate and pseudorandom systems) irrespective of the number of allowed
bands.

The one-dimensional nearest-neighbour tight-binding equation

t
(
un+1+ un−1

)+ Vnun = Eun (1)

is the model most used to analyse the localization properties of the electronic states.
In equation (1) the hopping interactiont is chosen as the unit of energies,un is the

amplitude of the electronic wave function at thenth lattice site,Vn is the site energy and
E the electron energy. The exponential localization of all the states by whatever weak
random potentialVn is a well known fact [1]. New interest to this subject has been added
consideringVn with a period incommensurate with the underlying lattice [2] i.e. whenVn
has properties intermediate between the periodic (Bloch) and the random (Anderson) case.
For the paradigmatic Harper potential,Vn = λ cos(2παn) with α irrational, Aubry and
André [3] have elucidated the role of the strengthλ of the potential in comparison with
the hopping interactiont , showing that the states are all extended or all localized provided
λ < 2t or λ > 2t respectively. In the caseλ = 2t all the states are ‘critical’. Moreover
the study of the Kronig–Penney model, withδ-potential strength incommensurate with the
underlying lattice, has made it possible to point out the existence of power law localized
states [4] between extended and exponentially localized states.

Further interest in the transport properties of the above topics is added by the presence
of an applied static electric field. Once again the random Kronig–Penney model has been
widely adopted through the Poincaré map associated with the corresponding Schrödinger
equation in order to obtain a finite difference equation of type (1) with appropriate hopping
and site energies [5]. An important contribution to the understanding of localization
properties of 1D disordered systems under the action of an external field has been provided
by Soukouliset al [6]; for small fields they individuate power law localized states, as
predicted by Prigodin [7]. This behaviour has been confirmed rigorously by Delyon and
coworkers [8]. Numerous successive contributions [9–13] have shown that the states of
a 1D random system under the application of an electric fieldf change their character
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Figure 1. Plot of − ln Tn as a function ofn calculated for a Kr̈onig–Penney model withδ-
potential barriers of heights equal to 5, at the energyE = 5 and under an applied electric field
f = 0.01 (Rydberg units are used). The intervals ofn corresponding to the jumps and plateaus
of − ln Tn can be predicted on the basis of the tilted band scheme applied to the multiband
spectrum of the Kr̈onig–Penney model. A nonlinear behaviour of− ln Tn can be observed in
the extremal parts of the jumps.

from exponential to power law localization and then, beyond a critical field, they become
extended. This depends on the type of potentialVn and on the ratioefL/E between the
electrostatic energy gained by the electron through the sample of lengthL, and its energy
E [10].

The transmittivityTn through an ordered 1D multiband system in an electric field as a
function of the chain lengthn shows regions of oscillations (plateaus in the plot of− ln Tn
versusn) and rapid decrease (jumps in the plot of− ln Tn). As an example, we report in
figure 1 the numerical results for the transmittivity of a Kronig–Penneyδ-potential model,
for electron energyE = 5 and electric fieldf = 0.01 (Rydberg units are used here); by
the tilted band scheme [14] we can soon realize that the growing segments and the plateaus
correspond to spatial regions where the travelling electron meets gaps and bands respectively.
A similar plot has been obtained by Leo [15] for the transport in ordered and disordered
semiconductor superlattices. Recently it has been observed [16] that a similar alternation
of jumps and plateaus occurs in disordered Kronig–Penney systems when the potential is
composed exclusively by barriers or exclusively by wells. For this class of systems it has
also been noticed that the behaviour of− ln Tn, in the regions where the jumps take place,
is not strictly linear; in particular, at the beginning of each jump,− ln Tn grows more than
linearly, indicating that the transmittivity decreases more than exponentially there. This
phenomenon can be defined as a form of superlocalization and has already appeared in the
context of fractal media [17].

The aim of this paper is to give an explanation of the nonlinear behaviour of− ln Tn,
starting from the observation that it occurs also in periodic Kronig–Penney systems under
an electric field. Here we concentrate mostly on a single band tight binding system, because
in this case it is possible to provide also an analytic form of− ln Tn. However, the basic
result of our analysis can explain the same effect in periodic and aperiodic tight binding
and Kronig–Penney models.

Let us consider first a perfect lattice described by equation (1) with periodic potential
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Vn = a. It is well known that this problem has itinerant solutions for energies in the
interval [−W + a,W + a], whereW = 2t is the half bandwidth, with dispersion relation
E(k) = a + 2t cos(k). For energies outside the allowed band(|E − a|/W > 1), we can
define for the exponentially decaying solutions of (1), the Lyapunov exponent

γ (E) = arcosh

∣∣∣∣E − aW

∣∣∣∣ (2)

thus− ln Tn varies linearly with the sample lengthn, with slope 2γ [1]. We consider then a
chain made by segments, and within each of them the energies are all equal (say in theith
segment let the site energies be all equal toai). If we think of each segment as a part of a
periodic infinite chain and repeat the reasoning leading to equation (2), then we have that
for energies external to [−W + ai,W + ai ] the slope of− ln Tn versusn is given by 2γi .
For the chain with different segments the slope of− ln Tn changes at the beginning of any
segment. In the limit of segments constituted by a single site,− ln Tn can be considered a
continuous curve as function ofn, with continuously changing slope according to the law

− d

dn
ln Tn = 2 arcosh

∣∣∣∣E − anWn

∣∣∣∣ (3)

whereWn is the half bandwidth at siten, andE is always external to the band at siten.
This is exactly the situation of a single band system where the site energies vary

according to the relation

an = V0+ ef n (4)

as required by the presence of an electric field of strengthf superimposed to a periodic
chain with site energiesV0. Integration of equation (3) thus provides the following analytic
expression for− ln Tn

− ln Tn = ∓
(

2

ef

){
|E − (V0+ ef n

)|arcosh
|E − (V0+ ef n)|

W

−
√
(E − (V0+ ef n))2−W 2

}
(5)

(n outside the tilted band, see figure 2(a)); the minus sign refers to the caseE > an +W ,
and the plus sign to the caseE < an − W . From figure 2(a) we can see that for
V0 − W < E < V0 + W the electron is in an allowed band region fromn = 0 up to
the siten∗ defined by the conditionV0 − W + f n∗ = E, thus we expectTn to oscillate
there, and to decrease forn > n∗. For E > V0 +W the electron is in a forbidden region
from n = 0 up to the pointn′∗ defined byV0 +W + f n′∗ = E, thusTn decreases; then it
oscillates for the sites within the tilted band and beyondn∗ it decreases again. For the tight
binding periodic case withV0 = 0, f = 0.01 and lengthN = 1000 sites, we compare in
figure 2(b) the theoretical predictions from equation (5) (continuous line) with transfer matrix
[18] numerical calculations of− ln Tn (circles). We have chosen three energies:E = −2t ,
E = 0 andE = 4t . In the first case the decreasing behaviour of the transmittivity begins
at n = 0; in the second case the transmittivity oscillates up ton∗ = 200, then it decreases;
in the third case the decrease ofTn is betweenn = 0 andn′∗ = 200, it oscillates from
n′∗ = 200 to n∗ = 600 and then it decreases. In all the cases the numerical results are
reproduced with high accuracy by equation (5).

Equation (5) can be given in a form useful for asymptotic regions. Let us define
α = ef/W and introduce the indexn′ to numerate the sites in the regions external to the
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Figure 2. (a) Schematic representation of the tilted band for a single band system with site
energiesV0 and half bandwidthW in the presence of a uniform electric field. The slope of the
band corresponds to the field strengthf . (b) Behaviour of− ln Tn as a function ofn for a single
band system withV0 = 0, W = 2t . The field intensity isf = 0.01. The three energy values
correspond to the horizontal lines of figure (a). ForE = −2t , − ln Tn grows fromn∗ = 0;
for E = 0 it oscillates up ton∗ = 200 and then it grows; forE = 4t , − ln Tn grows up to
n′∗ = 200, it oscillates up ton∗ = 600, and then it grows again. The circles are numerical
results, the lines represent the analytical law (5).

band: in figure 2(a) we see thatn′ = n − n∗ if we leave the band on the right, while
n′ = n′∗ − n if we leave the band on the left. We have then

− ln Tn = ∓ 2

α

{
(1+ αn′)arcosh(1+ αn′)−

√
(1+ αn′)2− 1

}
. (6)

Let us consider explicitly the caseV0 − W 6 E 6 V0 + W ; the caseE > V0 + W can
be handled along the same lines. In the ‘near band’ region,αn′ � 1, the leading term of
equation (6) is given by the expression

− ln Tn ∼
√
αn′3/2 (αn′ � 1) (7)

which does not contain the field in the exponent ofn′. In the ‘far band’ region,αn′ � 1
we have

− ln Tn ∼ 2n′(ln 2αn′ − 1) (αn′ � 1) (8)

which is almost linear inn′.
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For a multiband system− ln Tn behaves as in figure 2(b),E = −2t , in the regions where
the gaps begin, while in the regions at the end of the gaps it behaves as in figure 2(b),E = 4t .
For example, when a field is applied to a Kronig–Penney model (see figure 1) all the jumps
in the function− ln Tn, corresponding to gaps, can be interpreted in this way, and the
behaviour of− ln Tn ∼ n3/2 predicted by equation (7) is well reproduced in the proximity
of the jumps when the influence of the left border of the adjacent band is negligible.

The more than exponential decreasing rate of the transmittivity in the presence of an
electric field can be observed not only for periodic one-dimensional tight binding systems,
but also for aperiodic and pseudorandom systems where the field modifies the nature of
the states localized by the presence of the potential. We consider first an aperiodic system,
where the site energies are given by the incommensurate potential [19, 20]

Vn = λ cos(2παnν) (9)

with α irrational andν > 0. It is a well assessed fact [20, 21] that, if 0< ν < 1, the spectrum
of the potential (9) has extended states forE < |2t − λ| and exponentially localized states
for |2t − λ| < E < |2t + λ|; therefore it possesses mobility edges at the energy values
E = ±(2t − λ). We can control how the behaviour of the transmittivity changes under the
application of an electric field. From figure 3(a), whereλ = t , 2πα = 1.2 andν = 0.7,
we see that forE = −2t the envelope of− ln Tn has linear dependence fromn in the case
f = 0 (where the energy corresponds to an exponentially localized state), while it is clearly
nonlinear forf = 0.001.

The origin of the steps which can be observed in the plots of figures 3(a) and 3(b) can be
explained in terms of a real space continuous approximation. In the absence of electric fields
this is realized by superimposing the potentialVn to the band [−2t, 2t ] of the regular lattice;
this operation provides a pictorial representation of the allowed and forbidden regions for
the travelling electron energyE in the real space [21]. For instance, in the case of potential
(9) with λ = t and f = 0 the interval−t 6 E 6 t is always allowed for the electron
propagation, while fort < |E| < 3t an alternation of allowed and forbidden intervals as
function ofn appears. Therefore, in the case of figure 3(a), where the energyE = −2t has
been chosen, forf = 0 we observe the presence of a ladder structure which indicates an
alternation of intervals where− ln Tn oscillates (corresponding to allowed energy zones) and
intervals where it grows (corresponding to forbidden energy zones); the overall envelope of
− ln Tn is linear.

When the electric field is applied, all the structure constituted by the band [−2t, 2t ]
and the potentialVn has to be tilted; we thus obtain finite intervals where the electron lies
in an allowed region (corresponding to a plateaus of− ln Tn) and finite intervals where the
energy lies alternately in allowed and forbidden regions (corresponding to a ladder structure
in the plot). This explains why, forf = 0.001 andE = −2t (figure 3(a)), the plot presents
a ladder structure, up ton = 1000, which is progressively lost beyond this point. As it
can be observed, the envelope of the plot shows clearly a more than linear growth rate
of − ln Tn. This is better seen in figure 3(b) whereE = 2t . For f = 0 we observe a
linear growth behaviour of− ln Tn with superimposed steps. Iff = 0.001 the energy lies
in a completely allowed interval for 1000< n < 3000 where− ln Tn shows a plateau; for
3000< n < 5000 the alternation of allowed and forbidden zones is reflected in the ladder
structure superimposed to the clearly nonlinear growth behaviour. Finally, forn > 5000
the step structure gradually disappears because in this interval the energyE = 2t lies in a
completely forbidden zone.

If in equation (9) a valueν > 2 is assigned, the potential is pseudorandom [19] and, for
f = 0, all the eigenstates of the spectrum are exponentially localized. It can be observed
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Figure 3. Behaviour of− ln Tn as a function ofn in an aperiodic system (potential (9) with
λ = t and 2πα = 1.2): (a) ν = 0.7 (slowly varying potential),E = −2t ; (b) ν = 0.7 (slowly
varying potential),E = 2t ; (c) ν = 2.5 (pseudorandom potential),E = 2t . In the three pictures
the casesf = 0 andf = 0.001 are compared.

in figure 3(c), forν = 2.5, that the growing rate of− ln Tn is nonlinear and very rapid
for n > 3000 in comparison with what happens in the region 1000< n < 3000, which
resembles the plateau of figure 3(b). In the pseudorandom case the step structure is not
present because of a very rapid spatial fluctuation of the potential.
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Finally, we wish to remark that in a Kronig–Penney model with barriers assigned with
the same sign and distributed according to a pseudorandom law, the plot of− ln Tn presents
a structure of jumps and plateaus very similar to that observed in the disordered case [16];
the behaviour of the transmittivity at the beginning of each jump can again be interpreted
in the frame proposed in this paper.

In conclusion, we have investigated the phenomenon of the superlocalization in one-
dimensional systems in an electric field. It manifests a more than exponential rate of
decrease of the transmittivity as function of the length of the sample. For a single band
periodic system we have obtained an analytic form which provides for the transmittivity
the law− ln Tn ∼ n3/2. This behaviour survives also for the regions beyond each band of
multiband periodic systems when the bands are not too close, and in the case of aperiodic
and pseudorandom potentials.

One of the authors (R Farchioni) is grateful to Virgilio Dolcher and Alfredo Iembo for many
useful discussions.
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[17] Lévy Y E and Souillard B 1987aEurophys. Lett.4 233
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